Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gui-Yun Duan, Ya-Wei Sun, Jun-Zhi Liu and Jian-Wu Wang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail:
yugp2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.130$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(benzimidazol-2-yl)methane

In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$, the two essentially planar benzimidazolyl moieties make a dihedral angle of 63.53 (2) ${ }^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds stabilize the crystal packing.

Comment

Bis(benzimidazol-2-yl)methane and its derivatives are the subject of intensive study because they exhibit antimicrobial activities (Agh-Atabay et al., 2003), execute control of liver diseases (Kotomo et al., 1992), and may serve as inhibitors of cell death (Bitler et al., 2000) and HCV NS3 serine protease (Yeung et al., 2001). They are also employed as ligands (Gupta et al., 2001). In this paper, we report the crystal structure of the title compound, (I) (Fig. 1).

(I)

In (I), the bond lengths and angles of the benzimidazole moieties (Table 1) are in agreement with published values (Eryigit \& Kendi, 1998; Chen et al., 2002). The benzimidazolyl moieties $\mathrm{C} 1-\mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 2$ and $\mathrm{C} 9-\mathrm{C} 15 / \mathrm{N} 3 / \mathrm{N} 4$ are each essentially planar, making a dihedral angle of 63.53 (2) ${ }^{\circ}$.

The crystal packing of (I) (Fig. 2) is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interactions (Table 2).

Experimental

The title compound can be synthesized from 1,2-phenylenediamine and malonic acid in ethylene glycol as solvent at reflux for 24 h (Lane,

Figure 1
A view of (I), with displacement ellipsoids drawn at the 40% probability level.

Received 12 September 2005 Accepted 21 September 2005 Online 28 September 2005
1953), in a yield of 56%, or in PPA (poly phosphorous acid) as solvent at 453 K for $2.5-4 \mathrm{~h}$ (Vyas et al., 1980), in a yield of 85%. However, we used 1,2-phenylenediamine (0.02 mol) and malonamide (0.01 mol) at $453-463 \mathrm{~K}$ under solvent-free conditions for 1 h , providing a convenient protocol for the preparation of this class of heterocycles. Purification was achieved by recrystallization from methanol in 92% isolated yield. Crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature over two weeks.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4}$
$M_{r}=248.29$
Tetragonal, $I 4_{1} / a$
$a=18.296(4) \AA$
$c=15.728(3) \AA$
$V=5264.6(18) \AA^{3}$
$Z=16$
$D_{x}=1.253 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 4441 reflections
$\theta=2.2-25.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, orange
$0.40 \times 0.31 \times 0.27 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.950, T_{\text {max }}=0.979$
10662 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.130$
$S=1.00$
2307 reflections
172 parameters
H -atom parameters constrained

Figure 2
A packing diagram for the title compound. The intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown by dashed lines.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and were included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Agh-Atabay, N. M., Dulger, B. \& Gucin, F.(2003). Eur. J. Med. Chem. 38, 875881.

Bitler, C. M., Wood, P. L., Anstine, D. T., Meyer-Franke, A. \& Zhao, Q. (2000). World Patent WO 2000075117.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, C., Su, C., Xu, A., Zhang, H., Feng, X. \& Kang, B. (2002). Acta Cryst. E58, o916-o917.
Eryigit, R. \& Kendi, E. (1998). J. Chem. Cryst. 28, 145-147.
Gupta, M., Mathur, P. \& Butcher, R. J. (2001). Inorg. Chem. 40, 878-885.
Kotomo, S., Higuchi, S., Arai, I. \& Kodama, H. (1992). Jpn Patent JP 04208223.

Lane, E. S. (1953). J. Chem. Soc. pp. 2238-2240.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, D. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vyas, P. C., Oza, C. K. \& Goyal, A. K. (1980). Chem. Ind. (London), 7, 287288.

Yeung, K. S., Meanwell, N. A., Qiu, Z., Hernandez, D., Zhang, S., McPhee, F., Weinheimer, S., Clark, J. M. \& Janc, J. W. (2001). Bioorg. Med. Chem. Lett. 11, 2355-2359.

